海棠文学 - 言情小说 - 数理王冠在线阅读 - 分卷阅读267

分卷阅读267

    永远不缺乏数学大佬,在布伦德的报告暂时告一段落后,洛叶又跑到了隔壁的听了爱德华·威腾的数学报告。

说起来爱德华·威腾也是普林斯顿的教授,可因为课程问题,洛叶之前还没有近距离接触过这位教授,可也听过他的传奇事迹。

大学专业是历史,后来对物理产生了兴趣,开始改学物理,在物理学上创建了一系列的理论,几次引发理论物理学的大地震,是理论物理的代表人物,后来为了研究理论物理去钻研数学,再后来他获得了菲尔兹奖。

可以说他本身就代表了传奇。

洛叶高中时候还深入研究了一番物理学,因此自然也知道他的事迹,只是上了大学后,她暂时放弃了物理学。

现在倒是有幸听了威腾关于数学物理的报告。

物理弦论认为时空的总数是十,其中的四维是爱因斯坦理论中的四维时空,此外的六维属于卡拉比-丘空间,它独立得暗藏于四维时空的每一点,我们看不到它们,但是弦论的结果告诉我们,它们是真实存在的。

之所以叫卡拉比-丘空间,是因为这源于卡拉比的猜想,最后由丘成桐证明成立。

而弦论告诉我们的不止是存在我们看不到的六个维度——因为这六个维度缩成了一个极小的空间,这个空间小到我们可以当做存在,可是理论上它却是真实存在的,且告诉我们这六个维度才是我们宇宙的决定性因素,决定了这个宇宙的性质和物理定律,哪种粒子能够存在,质量是多少,他们是如何相互作用。甚至自然界的一些常数都取决于卡拉比-求丘空间的“内空间”。

而威腾就是希望把这个内空间用几何的方式来表达出来。

比起来布伦德,这位大数学家大物理家就随性了许多,没有和下面的人眼神交流,自顾自的写一个个的公式,下面没有一个人出言提出反对。

当然真的能听懂他理论的人非常少,物理界中能听懂他理论的人都少,更不用说在座的都是数学家了,他们只能从威腾写的公式上来理解它们的数学意义。

“……卡拉比-丘空间目前已经超过了十万个,现在依旧在不断的增加,镜像对最初在物理界发现,后来被用到了数学领域,求解曲线因此而破解,同时确定了给定阶数的有理曲线的五次数——一个卡拉比-丘空间的总数。”

威腾洋洋洒洒的讲了一个小时,根本没留下提问的时间,讲完就丢下资料走人了。

洛叶回去之后又回想了一遍他的内容,翻出来了一些威腾的论文。

对球体堆积又有了一点新的想法。

作者有话要说:  早安

☆、191

在三维的球体堆积中,最密堆积是由若干二维密置层叠合起来整的,密置层中相邻的等径球都相切,最常见的最密堆积有两种,一种是面心立方,底部是三角形,一种是六方最密堆积,底部为六角形。

其中面心立方是三维球体堆积中最密堆积,约为百分之七十四。开普勒猜想是关于此最著名的一个猜想,这个猜想直到了2014年,才由黑尔斯引导完成了形式化证明,而完成这个证明黑尔斯用了足足六年,从1998年提出穷举法,到之后引用超级计算机运算。

可以说这个证明复杂非常,而这仅仅是三维,从理论上来讲,每上升一个维度计算的难度和工程量都会上升,而洛叶却要反其道而行,想用简单的方式来证明,就像是布伦德证明的武义-劳森猜想,在八维的尝试证明中,洛叶不甚满意,等扩展到了她现在进行二十四维,更不满意了。

而她无法找到一条更为简单的路径,在接连听了布伦德和威腾的报告后,让她有了新的想法。

既然从抽象代数的角度找不到更优的路径,那不如引入其他理论。

洛叶决定多去听一听报告。

洛叶第二天听的报告是一位女数学家,玛杨·莫扎尼卡,在数学界中女数学家很少,顶尖的女数学家更少,而莫扎尼卡就是其中一位堪称顶尖的数学家,最为擅长的领域是黎曼曲面,模空间,几何学。

她做的报告是关于双曲面的。

双曲面状似甜甜圈,拥有两个洞以上的曲面,它可以说在三维空间无法存在,只存在于数学家想象中的抽象空间,曲面的距离和角度只能以一组特殊的方程来测量,如果双曲面上存在虚拟生物,那生物在双曲面上的任意一点都像是鞍部。

它自从出现就成了几何学的中心之一,被无数狂热的数学家研究,可是它的存在就是不可思议的,所以它也是高不可攀的,研究到了现在,一些简单的问题都没有解决掉。

比如在双曲面上的“直线”——在数学上被称为测地线,也就是最短路径问题。因为双曲面上,有些测地线可以无限延长,像是普通二维平面上的直线一样,有些却是封闭的曲线,所以数学家无法弄清楚在双曲面上到底有几条测地线。

而莫扎尼卡研究这个问题,发明了一个公式,可以回答这个问题,她以这个公式发表了三篇论文,分别刊登在四大期刊的三家期刊上——。

就差一个拿到大满贯。

是最近几年最为引人注目的数学家之一。

而她做的报告正是对这个公式的详细的补充和说明,下面坐满了人。

洛叶在下面听的十分专注,时不时的做笔记,不得不说,这种只存在于抽象空间的几何体对洛叶来说更为有吸引力,而且在莫扎尼卡说自己如何想到那个充满了创意的方程,一点点的让它变成现在的完整模样,怎么在脑海构建这么一个抽象几何体,给了洛叶十分大的启发。

她回去之后找了许多曲面的相关的论文,熬了一夜后马不停蹄的接着奔赴报告会场。

可以说等这次欧洲数学会结束的时候,洛叶还意犹未尽,这样高水平的报告会哪里有那么容易见到?再次见到恐怕要等14年的世界数学会了,而下次的欧洲数学会要等16年。

而这次的欧洲数学会会奖落在了布伦德头上。

代数几何方面的著名数学家法尔廷斯给布伦德颁发了这个奖项,舒尔茨也受邀出席了这次的欧洲数学会,只是他做的是45分钟的报告,他的风头比布伦德强劲,可比不得布伦德这几年发表的论文,和积累的成果。

洛叶站在他身边,跟随着众人一起鼓掌,“下一次的EMS(欧洲数学会奖简写)应该属于你了。”

两人这段时间都在保持着不太频繁的交流,洛叶知道他最近的研究进度,他现在撰写的论文准备投递给。

舒尔茨,“还要四年……”

“拉